65 research outputs found

    A Portable Active Binocular Robot Vision Architecture for Scene Exploration

    Get PDF
    We present a portable active binocular robot vision archi- tecture that integrates a number of visual behaviours. This vision archi- tecture inherits the abilities of vergence, localisation, recognition and si- multaneous identification of multiple target object instances. To demon- strate the portability of our vision architecture, we carry out qualitative and comparative analysis under two different hardware robotic settings, feature extraction techniques and viewpoints. Our portable active binoc- ular robot vision architecture achieved average recognition rates of 93.5% for fronto-parallel viewpoints and, 83% percentage for anthropomorphic viewpoints, respectively

    Object Edge Contour Localisation Based on HexBinary Feature Matching

    Get PDF
    This paper addresses the issue of localising object edge contours in cluttered backgrounds to support robotics tasks such as grasping and manipulation and also to improve the potential perceptual capabilities of robot vision systems. Our approach is based on coarse-to-fine matching of a new recursively constructed hierarchical, dense, edge-localised descriptor, the HexBinary, based on the HexHog descriptor structure first proposed in [1]. Since Binary String image descriptors [2]ā€“ [5] require much lower computational resources, but provide similar or even better matching performance than Histogram of Orientated Gradient (HoG) descriptors, we have replaced the HoG base descriptor fields used in HexHog with Binary Strings generated from first and second order polar derivative approximations. The ALOI [6] dataset is used to evaluate the HexBinary descriptors which we demonstrate to achieve a superior performance to that of HexHoG [1] for pose refinement. The validation of our object contour localisation system shows promising results with correctly labelling ~86% of edgel positions and mis-labelling ~3%

    Recognising the Clothing Categories from Free-Configuration Using Gaussian-Process-Based Interactive Perception

    Get PDF
    In this paper, we propose a Gaussian Process- based interactive perception approach for recognising highly- wrinkled clothes. We have integrated this recognition method within a clothes sorting pipeline for the pre-washing stage of an autonomous laundering process. Our approach differs from reported clothing manipulation approaches by allowing the robot to update its perception confidence via numerous interactions with the garments. The classifiers predominantly reported in clothing perception (e.g. SVM, Random Forest) studies do not provide true classification probabilities, due to their inherent structure. In contrast, probabilistic classifiers (of which the Gaussian Process is a popular example) are able to provide predictive probabilities. In our approach, we employ a multi-class Gaussian Process classification using the Laplace approximation for posterior inference and optimising hyper-parameters via marginal likelihood maximisation. Our experimental results show that our approach is able to recognise unknown garments from highly-occluded and wrinkled con- figurations and demonstrates a substantial improvement over non-interactive perception approaches

    Interactive Perception Based on Gaussian Process Classification for House-Hold Objects Recognition and Sorting

    Get PDF
    We present an interactive perception model for object sorting based on Gaussian Process (GP) classification that is capable of recognizing objects categories from point cloud data. In our approach, FPFH features are extracted from point clouds to describe the local 3D shape of objects and a Bag-of-Words coding method is used to obtain an object-level vocabulary representation. Multi-class Gaussian Process classification is employed to provide and probable estimation of the identity of the object and serves a key role in the interactive perception cycle ā€“ modelling perception confidence. We show results from simulated input data on both SVM and GP based multi-class classifiers to validate the recognition accuracy of our proposed perception model. Our results demonstrate that by using a GP-based classifier, we obtain true positive classification rates of up to 80%. Our semi-autonomous object sorting experiments show that the proposed GP based interactive sorting approach outperforms random sorting by up to 30% when applied to scenes comprising configurations of household objects

    Parallel stereo vision algorithm

    Get PDF
    Integrating a stereo-photogrammetric robot head into a real-time system requires software solutions that rapidly resolve the stereo correspondence problem. The stereo-matcher presented in this paper uses therefore code parallelisation and was tested on three different processors with x87 and AVX. The results show that a 5mega pixels colour image can be matched in 5,55 seconds or as monochrome in 3,3 seconds

    Continuous Perception for Classifying Shapes and Weights of Garmentsfor Robotic Vision Applications

    Get PDF
    We present an approach to continuous perception for robotic laundry tasks. Our assumption is that the visual prediction of a garment's shapes and weights is possible via a neural network that learns the dynamic changes of garments from video sequences. Continuous perception is leveraged during training by inputting consecutive frames, of which the network learns how a garment deforms. To evaluate our hypothesis, we captured a dataset of 40K RGB and 40K depth video sequences while a garment is being manipulated. We also conducted ablation studies to understand whether the neural network learns the physical and dynamic properties of garments. Our findings suggest that a modified AlexNet-LSTM architecture has the best classification performance for the garment's shape and weights. To further provide evidence that continuous perception facilitates the prediction of the garment's shapes and weights, we evaluated our network on unseen video sequences and computed the 'Moving Average' over a sequence of predictions. We found that our network has a classification accuracy of 48% and 60% for shapes and weights of garments, respectively.Comment: Accepted by the 17th International Conference on Computer Vision Theory and Application

    On the Calibration of Active Binocular and RGBD Vision Systems for Dual-Arm Robots

    Get PDF
    This paper describes a camera and hand-eye calibration methodology for integrating an active binocular robot head within a dual-arm robot. For this purpose, we derive the forward kinematic model of our active robot head and describe our methodology for calibrating and integrating our robot head. This rigid calibration provides a closedform hand-to-eye solution. We then present an approach for updating dynamically camera external parameters for optimal 3D reconstruction that are the foundation for robotic tasks such as grasping and manipulating rigid and deformable objects. We show from experimental results that our robot head achieves an overall sub millimetre accuracy of less than 0.3 millimetres while recovering the 3D structure of a scene. In addition, we report a comparative study between current RGBD cameras and our active stereo head within two dual-arm robotic testbeds that demonstrates the accuracy and portability of our proposed methodology

    Single-Shot Clothing Category Recognition in Free-Configurations with Application to Autonomous Clothes Sorting

    Get PDF
    This paper proposes a single-shot approach for recognising clothing categories from 2.5D features. We propose two visual features, BSP (B-Spline Patch) and TSD (Topology Spatial Distances) for this task. The local BSP features are encoded by LLC (Locality-constrained Linear Coding) and fused with three different global features. Our visual feature is robust to deformable shapes and our approach is able to recognise the category of unknown clothing in unconstrained and random configurations. We integrated the category recognition pipeline with a stereo vision system, clothing instance detection, and dual-arm manipulators to achieve an autonomous sorting system. To verify the performance of our proposed method, we build a high-resolution RGBD clothing dataset of 50 clothing items of 5 categories sampled in random configurations (a total of 2,100 clothing samples). Experimental results show that our approach is able to reach 83.2\% accuracy while classifying clothing items which were previously unseen during training. This advances beyond the previous state-of-the-art by 36.2\%. Finally, we evaluate the proposed approach in an autonomous robot sorting system, in which the robot recognises a clothing item from an unconstrained pile, grasps it, and sorts it into a box according to its category. Our proposed sorting system achieves reasonable sorting success rates with single-shot perception.Comment: 9 pages, accepted by IROS201

    A Biologically Motivated Software Retina for Robotic Sensors for ARM-Based Mobile Platform Technology

    Get PDF
    A key issue in designing robotics systems is the cost of an integrated camera sensor that meets the bandwidth/processing requirement for many advanced robotics applications, especially lightweight robotics applications, such as visual surveillance or SLAM in autonomous aerial vehicles. There is currently much work going on to adapt smartphones to provide complete robot vision systems, as the smartphone is so exquisitely integrated by having camera(s), inertial sensing, sound I/O and excellent wireless connectivity. Mass market production makes this a very low-cost platform and manufacturers from quadrotor drone suppliers to childrenā€™s toys, such as the Meccanoid robot [5], employ a smartphone to provide a vision system/control system [7,8]. Accordingly, many research groups are attempting to optimise image analysis, computer vision and machine learning libraries for the smartphone platform. However current approaches to robot vision remain highly demanding for mobile processors such as the ARM, and while a number of algorithms have been developed, these are very stripped down, i.e. highly compromised in function or performance. For example, the semi-dense visual odometry implementation of [1] operates on images of only 320x240pixels. In our research we have been developing biologically motivated foveated vision algorithms based on a model of the mammalian retina [2], potentially 100 times more efficient than their conventional counterparts. Accordingly, vision systems based on the foveated architectures found in mammals have also the potential to reduce bandwidth and processing requirements by about x100 - it has been estimated that our brains would weigh ~60Kg if we were to process all our visual input at uniform high resolution. We have reported a foveated visual architecture [2,3,4] that implements a functional model of the retina-visual cortex to produce feature vectors that can be matched/classified using conventional methods, or indeed could be adapted to employ Deep Convolutional Neural Nets for the classification/interpretation stage. Given the above processing/bandwidth limitations, a viable way forward would be to perform off-line learning and implement the forward recognition path on the mobile platform, returning simple object labels, or sparse hierarchical feature symbols, and gaze control commands to the host robot vision system and controller. We are now at the early stages of investigating how best to port our foveated architecture onto an ARM-based smartphone platform. To achieve the required levels of performance we propose to port and optimise our retina model to the mobile ARM processor architecture in conjunction with their integrated GPUs. We will then be in the position to provide a foveated smart vision system on a smartphone with the advantage of processing speed gains and bandwidth optimisations. Our approach will be to develop efficient parallelising compilers and perhaps propose new processor architectural features to support this approach to computer vision, e.g. efficient processing of hexagonally sampled foveated images. Our current goal is to have a foveated system running in real-time on at least a 1080p input video stream to serve as a front-end robot sensor for tasks such as general purpose object recognition and reliable dense SLAM using a commercial off-the-shelf smartphone. Initially this system would communicate a symbol stream to conventional hardware performing back-end visual classification/interpretation, although simple object detection and recognition tasks should be possible on-board the device. We propose that, as in Nature, foveated vision is the key to achieving the necessary data reduction to be able to implement complete visual recognition and learning processes on the smartphone itself
    • ā€¦
    corecore